Select Page

China factory 3000kg 6t 8t Small Electric Good Quality Crawler Spider Crane with Safety Torque Limiter

Product Description

3000kg 6t 8t Small Electric Good Quality Crawler Spider Crane with Safety Torque Limiter

Product Description

Belift Brand Crawler Spider Crane combines the space-saving qualities of a spider crane with the powerful lifting capabilities of a pick-and-carry crane inside 1 practical machine. This compact equipment offers an alternate solution to the difficulties associated with lifting in areas with restricted access.

The 8ton spider crane is a masterpiece of engineering, providing reliable lifting solutions for heavy loads in areas with difficult access. Its compact and lightweight design allows it to fit in tight spaces and its 4 stabilizing legs provide stability and support on uneven terrain. Equipped with hi-tech controls, the crane operates smoothly and efficiently, making it easy to use for operators of all levels. With its impressive features and versatility, the 8ton spider crane is a valuable asset to any workforce.

Features & Advantages:
The MINI spider crane is an innovative and versatile piece of equipment that is designed with efficiency and productivity in mind. This compact and maneuverable crane is perfect for those hard-to-reach areas where traditional cranes cannot access.

Despite its small size, the MINI spider crane has a lifting capacity of up to 6 tons, making it perfect for a wide range of jobs. Its powerful boom and extensive reach allow it to lift heavy loads with ease, while its compact size makes it perfect for working in tight spaces.

The MINI spider crane is also incredibly easy to operate, with its user-friendly controls and intuitive design allowing operators to quickly and effectively carry out tasks with minimal training or experience. It is also very safe to use, with a range of innovative safety features ensuring that operators and bystanders are kept out of harm’s way at all times.

What’s more, the MINI spider crane is incredibly versatile, with its compact design allowing it to be used in a wide variety of settings, from construction sites and industrial facilities to warehouses, factories, and even domestic settings.

Overall, the MINI spider crane is a fantastic piece of equipment that offers a range of benefits and advantages. Whether you need to lift heavy loads in tight spaces or require a versatile and powerful crane for a range of different tasks, the MINI spider crane is sure to meet all of your needs and exceed your expectations.

Product Parameters

Model Type BL2.0C BL3.0C BL5.0C BL8.0C BL12.0C
Load capacity 2 ton 3 ton 5 ton 8 ton 12 ton
Lifting Height 5.98m 9.9m 16.8m 18.5m 23.5m
Max operating radius 4.7m×0.4t 8.6m×0.4t 15.3m×0.5t 16.8m×0.35t 21.3m×0.5t
Walking device Walking mode Hydraulic motor drive, 2 speed
  Walking speed 0-2.0km/h 0-2.5km/h 0-2.5km/h 0-2.5km/h 0-3km/h
  Climbing ability 20°(36%)
Engine Start mode Electric start
  Startup Tempt. -5°C~40°C
  Engine AC Electric + Diesel Dual Power
  Battery capacity 12v 45AH 12v 45AH 12v 45AH 12v 45AH 24v 45AH
Weight(KG) 2000kg 2500kg 6500kg 7800kg 11500kg
Vehicle Size(e( L*W*H)(m) 2.2 * 0.95 *1.65 2.95*0.98*1.56 4.75 *1.5 * 2.2 5 *1.6 * 2.2 5.7*1.8* 2.4
Packing Size (m) 2.4*1.2*1.9 3.1*1.2*1.9 1*20ft GP 1*20ft GP 1*20ft GP
20ft container loading Qty 3 sets 2 sets 1 set 1 set 1 set

Detailed Photos

Company Profile

Since 2015, ZheJiang Belift Machinery Co.,Ltd has grown into the leading manufacturer specialised in providing the efficient, reliable and safe indoor aerial wok plat-forms in global business. Based on our knowledge of construction worksites and the multiple applications of the access equipment, we have designed 6 different ranges: Single mast lift AWP Series, Dual masts lift DPL Series, Self propelled mast lift AMWP Series, Self propelled telescopic mast series ASWP Series, Mini Mobile scissor lift MMS Series and Mini self propelled scissor lift MSS Series. As a specialist of indoor aerial work equipment, we continue where others stop.From the selection of each component, the design of utility and beauty, to the perfect after-sales service,Belift guarantees the customers to obtain the best quality service. Now Belift takes”Promote the development of global indoor aerial work, ensure indoor work safety, and improve indoor work efficiency”for the mission,”To be the global leader in indoor aerial work equipment”for the vision, Starting from the perspective of customers, and keeping innovating and improving.


Certificate: CE, ROHS, SGS, ISO etc.

Welcome to visit us and negotiate business. We will pick up you and arrange the accommodation.
Dealers and Wholesalers are especially welcomed and we will give special discounts.

Our Advantages

1.Adopting perfect shot blasting treatment and anti corrosion paint spraying, it is beautifal in apperance.
2. Unique design for Compact structure,it is strong enough to support the loading.
3. Produced by automatic production line and the quality is highly guaranteed.
4. High strengthened steel structures, smoothly lift up and drop down, easily operated, very few faults.
5. Power sources: customised as per the local standards

After Sales Service

1.Spare parts provided freely within quality warranty.
2. Providing user’s manual.
3.Liftetime techinique support.
4.24 hours telephone and Internet service


1. Are you a factory or trading company?
Yes, we’re factory with over 10 years exporting experience.
2. What’s the MOQ?
3. Do you offer OEM&ODM service?
Yes, like lifting capacity, lifting height, size of platform, painting color, logo, manual etc.
4. What’s the quality warranty?
24 months. Spare parts provided freely within quality warranty.
5. How can I get the after-sales service?
We offer Videos, Pictures, User Manual, Technical guidance and 24 hours online service
6. What’s your QA&QC policy?
100% Test before shipping.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Spare Parts Provided
Warranty: 1 Year
Application: Workshop Crane, Shipboard Crane, Warehouse Crane, Building Crane
US$ 25000/Piece
1 Piece(Min.Order)


Order Sample

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.

about shipping cost and estimated delivery time.
Payment Method:


Initial Payment

Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

Can you explain the role of temperature and pressure in injection molding quality control?

Temperature and pressure are two critical parameters in injection molding that significantly impact the quality control of the process. Let’s explore their roles in more detail:


The temperature in injection molding plays several important roles in ensuring quality control:

1. Material Flow and Fill:

The temperature of the molten plastic material affects its viscosity, or flowability. Higher temperatures reduce the material’s viscosity, allowing it to flow more easily into the mold cavities during the injection phase. Proper temperature control ensures optimal material flow and fill, preventing issues such as short shots, flow marks, or incomplete part filling. Temperature control also helps ensure consistent material properties and dimensional accuracy in the final parts.

2. Melting and Homogenization:

The temperature must be carefully controlled during the melting process to ensure complete melting and homogenization of the plastic material. Insufficient melting can result in unmelted particles or inconsistent material properties, leading to defects in the molded parts. Proper temperature control during the melting phase ensures uniform melting and mixing of additives, enhancing material homogeneity and the overall quality of the molded parts.

3. Cooling and Solidification:

After the molten plastic is injected into the mold, temperature control is crucial during the cooling and solidification phase. Proper cooling rates and uniform cooling help prevent issues such as warping, shrinkage, or part distortion. Controlling the temperature allows for consistent solidification throughout the part, ensuring dimensional stability and minimizing internal stresses. Temperature control also affects the part’s crystallinity and microstructure, which can impact its mechanical properties.


Pressure control is equally important in achieving quality control in injection molding:

1. Material Packing:

During the packing phase of injection molding, pressure is applied to the molten plastic material to compensate for shrinkage as it cools and solidifies. Proper pressure control ensures that the material is adequately packed into the mold cavities, minimizing voids, sinks, or part deformation. Insufficient packing pressure can lead to incomplete filling and poor part quality, while excessive pressure can cause excessive stress, part distortion, or flash.

2. Gate and Flow Control:

The pressure in injection molding influences the flow behavior of the material through the mold. The pressure at the gate, where the molten plastic enters the mold cavity, needs to be carefully controlled. The gate pressure affects the material’s flow rate, filling pattern, and packing efficiency. Optimal gate pressure ensures uniform flow and fill, preventing issues like flow lines, weld lines, or air traps that can compromise part quality.

3. Ejection and Part Release:

Pressure control is essential during the ejection phase to facilitate the easy removal of the molded part from the mold. Adequate ejection pressure helps overcome any adhesion or friction between the part and the mold surfaces, ensuring smooth and damage-free part release. Improper ejection pressure can result in part sticking, part deformation, or mold damage.

4. Process Monitoring and Feedback:

Monitoring and controlling the temperature and pressure parameters in real-time are crucial for quality control. Advanced injection molding machines are equipped with sensors and control systems that continuously monitor temperature and pressure. These systems provide feedback and allow for adjustments during the process to maintain optimum conditions and ensure consistent part quality.

Overall, temperature and pressure control in injection molding are vital for achieving quality control. Proper temperature control ensures optimal material flow, melting, homogenization, cooling, and solidification, while pressure control ensures proper material packing, gate and flow control, ejection, and part release. Monitoring and controlling these parameters throughout the injection molding process contribute to the production of high-quality parts with consistent dimensions, mechanical properties, and surface finish.

Can you provide guidance on the selection of injection molded materials based on application requirements?

Yes, I can provide guidance on the selection of injection molded materials based on application requirements. The choice of material for injection molding plays a critical role in determining the performance, durability, and functionality of the molded parts. Here’s a detailed explanation of the factors to consider and the guidance for selecting the appropriate material:

1. Mechanical Properties:

Consider the mechanical properties required for the application, such as strength, stiffness, impact resistance, and wear resistance. Different materials have varying mechanical characteristics, and selecting a material with suitable properties is crucial. For example, engineering thermoplastics like ABS, PC, or nylon offer high strength and impact resistance, while materials like PEEK or ULTEM provide exceptional mechanical performance at elevated temperatures.

2. Chemical Resistance:

If the part will be exposed to chemicals, consider the chemical resistance of the material. Some materials, like PVC or PTFE, exhibit excellent resistance to a wide range of chemicals, while others may be susceptible to degradation or swelling. Ensure that the selected material can withstand the specific chemicals it will encounter in the application environment.

3. Thermal Properties:

Evaluate the operating temperature range of the application and choose a material with suitable thermal properties. Materials like PPS, PEEK, or LCP offer excellent heat resistance, while others may have limited temperature capabilities. Consider factors such as the maximum temperature, thermal stability, coefficient of thermal expansion, and heat transfer requirements of the part.

4. Electrical Properties:

For electrical or electronic applications, consider the electrical properties of the material. Materials like PBT or PPS offer good electrical insulation properties, while others may have conductive or dissipative characteristics. Determine the required dielectric strength, electrical conductivity, surface resistivity, and other relevant electrical properties for the application.

5. Environmental Conditions:

Assess the environmental conditions the part will be exposed to, such as humidity, UV exposure, outdoor weathering, or extreme temperatures. Some materials, like ASA or HDPE, have excellent weatherability and UV resistance, while others may degrade or become brittle under harsh conditions. Choose a material that can withstand the specific environmental factors to ensure long-term performance and durability.

6. Regulatory Compliance:

Consider any regulatory requirements or industry standards that the material must meet. Certain applications, such as those in the medical or food industries, may require materials that are FDA-approved or comply with specific certifications. Ensure that the selected material meets the necessary regulatory and safety standards for the intended application.

7. Cost Considerations:

Evaluate the cost implications associated with the material selection. Different materials have varying costs, and the material choice should align with the project budget. Consider not only the material cost per unit but also factors like tooling expenses, production efficiency, and the overall lifecycle cost of the part.

8. Material Availability and Processing:

Check the availability of the material and consider its processability in injection molding. Ensure that the material is readily available from suppliers and suitable for the specific injection molding process parameters, such as melt flow rate, moldability, and compatibility with the chosen molding equipment.

9. Material Testing and Validation:

Perform material testing and validation to ensure that the selected material meets the required specifications and performance criteria. Conduct mechanical, thermal, chemical, and electrical tests to verify the material’s properties and behavior under application-specific conditions.

Consider consulting with material suppliers, engineers, or experts in injection molding to get further guidance and recommendations based on the specific application requirements. They can provide valuable insights into material selection based on their expertise and knowledge of industry standards and best practices.

By carefully considering these factors and guidance, you can select the most appropriate material for injection molding that meets the specific application requirements, ensuring optimal performance, durability, and functionality of the molded parts.

What industries and applications commonly utilize injection molded parts?

Injection molded parts find widespread use across various industries and applications due to their versatility, cost-effectiveness, and ability to meet specific design requirements. Here’s a detailed explanation of the industries and applications that commonly utilize injection molded parts:

1. Automotive Industry:

The automotive industry extensively relies on injection molded parts for both interior and exterior components. These parts include dashboards, door panels, bumpers, grilles, interior trim, seating components, electrical connectors, and various engine and transmission components. Injection molding enables the production of lightweight, durable, and aesthetically pleasing parts that meet the stringent requirements of the automotive industry.

2. Consumer Electronics:

Injection molded parts are prevalent in the consumer electronics industry. They are used in the manufacturing of components such as housings, buttons, bezels, connectors, and structural parts for smartphones, tablets, laptops, gaming consoles, televisions, cameras, and other electronic devices. Injection molding allows for the production of parts with precise dimensions, excellent surface finish, and the ability to integrate features like snap fits, hinges, and internal structures.

3. Medical and Healthcare:

The medical and healthcare industry extensively utilizes injection molded parts for a wide range of devices and equipment. These include components for medical devices, diagnostic equipment, surgical instruments, drug delivery systems, laboratory equipment, and disposable medical products. Injection molding offers the advantage of producing sterile, biocompatible, and precise parts with tight tolerances, ensuring safety and reliability in medical applications.

4. Packaging and Containers:

Injection molded parts are commonly used in the packaging and container industry. These parts include caps, closures, bottles, jars, tubs, trays, and various packaging components. Injection molding allows for the production of lightweight, durable, and visually appealing packaging solutions. The process enables the integration of features such as tamper-evident seals, hinges, and snap closures, contributing to the functionality and convenience of packaging products.

5. Aerospace and Defense:

The aerospace and defense industries utilize injection molded parts for a variety of applications. These include components for aircraft interiors, cockpit controls, avionics, missile systems, satellite components, and military equipment. Injection molding offers the advantage of producing lightweight, high-strength parts with complex geometries, meeting the stringent requirements of the aerospace and defense sectors.

6. Industrial Equipment:

Injection molded parts are widely used in industrial equipment for various applications. These include components for machinery, tools, pumps, valves, electrical enclosures, connectors, and fluid handling systems. Injection molding provides the ability to manufacture parts with excellent dimensional accuracy, durability, and resistance to chemicals, oils, and other harsh industrial environments.

7. Furniture and Appliances:

The furniture and appliance industries utilize injection molded parts for various components. These include handles, knobs, buttons, hinges, decorative elements, and structural parts for furniture, kitchen appliances, household appliances, and white goods. Injection molding enables the production of parts with aesthetic appeal, functional design, and the ability to withstand regular use and environmental conditions.

8. Toys and Recreational Products:

Injection molded parts are commonly found in the toy and recreational product industry. They are used in the manufacturing of plastic toys, games, puzzles, sporting goods, outdoor equipment, and playground components. Injection molding allows for the production of colorful, durable, and safe parts that meet the specific requirements of these products.

9. Electrical and Electronics:

Injection molded parts are widely used in the electrical and electronics industry. They are employed in the production of electrical connectors, switches, sockets, wiring harness components, enclosures, and other electrical and electronic devices. Injection molding offers the advantage of producing parts with excellent dimensional accuracy, electrical insulation properties, and the ability to integrate complex features.

10. Plumbing and Pipe Fittings:

The plumbing and pipe fittings industry relies on injection molded parts for various components. These include fittings, valves, connectors, couplings, and other plumbing system components. Injection molding provides the ability to manufacture parts with precise dimensions, chemical resistance, and robustness, ensuring leak-free connections and long-term performance.

In summary, injection molded parts are utilized in a wide range of industries and applications. The automotive, consumer electronics, medical and healthcare, packaging, aerospace and defense, industrial equipment, furniture and appliances, toys and recreational products, electrical and electronics, and plumbing industries commonly rely on injection molding for the production of high-quality, cost-effective, and functionally optimized parts.

China factory 3000kg 6t 8t Small Electric Good Quality Crawler Spider Crane with Safety Torque Limiter  China factory 3000kg 6t 8t Small Electric Good Quality Crawler Spider Crane with Safety Torque Limiter
editor by CX 2024-03-13


Recent Posts


As one of leading torquelimiter manufacturers, suppliers and exporters of mechanical products, We offer torquelimiter and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of bush chains

We specializing in the production of Agricultural Gearbox, PTO Shafts, Sprockets, Fluid Coupling, Worm Gear Reducers, Gears and racks, Roller Chains, Sheave and Pulleys, Planetary Gearboxes, Timing Pulleys, Shaft Collars and more.

We have exported our products to clients around the world and earned a good reputation because of our superior product quality and after-sales service.

We warmly welcome customers both at home and abroad to contact us to negotiate business, exchange information and cooperate with us.